Macro as Explicitly Aggregated Micro

David Baqaee Emmanuel Farhi

The Aggregation Problem

A program dating back to the very beginnings of economics.

- Derailed in 70s:
 - "negative" theoretical results (anything goes);
 - lack of disaggregated data.

Recent explosion, building on pioneers of 80s and 90s.

Increasing scope, scale, and availability of disaggregated data.

Need flexible aggregation theories to harness deluge of data.

Macro as Explicitly Aggregated Micro

 (HA) Distribution of heterogeneous agents. consumption and factor supplies

 (IO) Input-output network of heterogenous producers. production from factors and intermediates

 Objective: develop a general approach to consistent theory and measurement of propagation and aggregation with HA+IO.

Research agenda David Baqaee.

Talk Based on Series of Papers with David Baqaee

- Inefficient economies.
 - "Productivity and Misallocation in General Equilibrium"
- Nonlinearities in efficient economies.
 - "Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem"
- Economies with heterogeneous agents.
 - "Macroeconomics with Heterogeneous Agents and Input-Output Networks"
- Intermediate-level aggregation.
 - "A Short Note on Aggregating Productivity"
- Open economies.
 - "Networks, Barriers, and Trade"
- Micro-foundations of aggregate production functions and the Cambridge-Cambridge Capital controversy.
 - "The Microeconomic Foundations of Aggregate Production Functions"
- Ongoing work on increasing returns, entry/exit, dynamics, industry structure, growth, etc.

First-Order Aggregation Theorems for Efficient Economies

• Solow (1957) with aggregate production function:

$$d \log Y = d \log TFP + \sum_{f} \Lambda_f d \log L_f.$$

• Hulten (1978) with HA+IO:

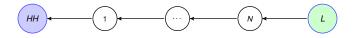
$$d \log TFP = \sum_{k} \lambda_k d \log A_k$$
, where $\lambda_k = \frac{sales_k}{GDP}$.

- Structural foundation for Domar aggregation, not definition.
- Measurement (growth accounting); predictions (counterfactuals).
- Powerful irrelevance result: disaggregated details (IO network, factors, returns to scale, elasticities, wealth distribution and mpcs); initial level of aggregation.

Limits of Hulten's Theorem and Need for New Theories

- Fails in inefficient economies.
- Fails at higher-orders of approx. relevant for nonlinearities.
- Disaggregated details and initial aggregation level matter.
- Need new theories for inefficient and nonlinear aggregation.

Why Sales Shares? Ex. Simple Vertical Economy



- k transforms k-1 linearly, productivity A_k .
- Zero value added for $k \neq N$ but sales share $\lambda_k = 1$.
- Productivity shock to k:

$$\frac{\mathrm{d}\log Y}{\mathrm{d}\log A_k}=\lambda_k=1.$$

• More complex economies with substitution and reallocation?

Pure Technology Effects and Reallocation Effects

• Productivities A_i and allocation matrix $\mathcal{X}_{ij} = x_{ij}/y_j$ give allocation. exogenous factor supplies (generalizes)

• Aggregate output function $\mathscr{Y}(A,\mathscr{X})$. via homothetic final demand aggregator or at constant prices

Change in equilibrium aggregate output in response to shocks:

$$d\log Y = \underbrace{\frac{\partial \log \mathscr{Y}}{\partial \log A} d\log A}_{\text{pure technology}} + \underbrace{\frac{\partial \log \mathscr{Y}}{\partial \mathscr{X}} d\mathscr{X}}_{\text{reallocation}}.$$

Hulten's Theorem as an Envelope Theorem

$$d\log Y = \underbrace{\frac{\partial \log \mathscr{Y}}{\partial \log A} d\log A}_{\text{pure technology}} + \underbrace{\frac{\partial \log \mathscr{Y}}{\partial \mathscr{X}} d\mathscr{X}}_{\text{reallocation}},$$

with

$$\frac{\partial \log \mathscr{Y}}{\partial \log A} d \log A = \lambda' d \log A \quad \text{and} \quad \frac{\partial \log \mathscr{Y}}{\partial \mathscr{X}} d \mathscr{X} = 0.$$

- Pure technology effects: Domar-weights sufficient stat.
- Zero reallocation effects despite reallocations (envelope).

Distortions

• Capture arbitrary distortions with saturating wedges.

• Can represent wedges as markups μ_i via network relabelling.

• Equilibrium aggregate output $Y(A, \mu) = \mathcal{Y}(A, \mathcal{X}(A, \mu))$.

Two Reasons for Failure of Hulten with Distortions

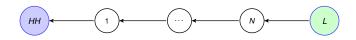
$$d\log Y = \underbrace{\frac{\partial \log \mathscr{Y}}{\partial \log A} d\log A}_{\text{pure technology}} + \underbrace{\frac{\partial \log \mathscr{Y}}{\partial \mathscr{X}} d\mathscr{X}}_{\text{reallocation}},$$

with

$$\frac{\partial \log \mathscr{Y}}{\partial \log A} d \log A \neq \lambda' d \log A \quad \text{and} \quad \frac{\partial \log \mathscr{Y}}{\partial \mathscr{X}} d \mathscr{X} \neq 0.$$

- Two legs of Hulten's theorem break.
- Two key illustrating examples.

Ex. Simple Vertical Economy



• k transforms k-1 linearly, productivity A_k , markup/wedge μ_k .

Productivity shock to k.

Ex. Simple Vertical Economy

$$\frac{\mathrm{d}\log Y}{\mathrm{d}\log A_k} = \underbrace{\frac{\mathrm{d}\log \mathscr{Y}}{\mathrm{d}\log A_k}}_{\text{pure technology}} + \underbrace{\frac{\mathrm{d}\log \mathscr{Y}}{\mathrm{d}\mathscr{X}}}_{\text{reallocation}} \frac{\mathrm{d}\mathscr{X}}{\mathrm{d}\log A_k}.$$

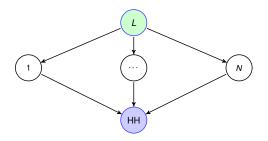
Pure changes in technology:

$$\frac{\mathrm{d}\log\mathscr{Y}}{\mathrm{d}\log A_k}=\tilde{\lambda}_k=1\neq\lambda_k=\prod_{i=1}^{k-1}\mu_i^{-1}.$$

Reallocation effects:

$$\frac{\mathrm{d}\log\mathscr{Y}}{\mathrm{d}\mathscr{X}}\frac{\mathrm{d}\mathscr{X}}{\mathrm{d}\log A_k}=0.$$

Ex. Simple Horizontal Economy



- k produces from labor, productivity A_k , markup/wedge μ_k .
- CES consumption aggregator with elasticity θ_0 .
- Allocation matrix $\mathscr{X}(A,\mu) = \left(\frac{L_1(A,\mu)}{L}, \cdots, \frac{L_N(A,\mu)}{L}\right)$.
- Productivity shock to k.

Ex. Simple Horizontal Economy

$$\frac{\mathrm{d} \log Y}{\mathrm{d} \log A_k} = \underbrace{\frac{\mathrm{d} \log \mathscr{Y}}{\mathrm{d} \log A_k}}_{\text{pure technology}} + \underbrace{\frac{\mathrm{d} \log \mathscr{Y}}{\mathrm{d} \mathscr{X}}}_{\text{reallocation}} \frac{\mathrm{d} \mathscr{X}}{\mathrm{d} \log A_k}.$$

• Pure changes in technology:

$$\frac{\mathrm{d}\log\mathscr{Y}}{\mathrm{d}\log A_k}=\lambda_k.$$

Reallocation effects as changes in allocative efficiency:

$$\frac{\mathrm{d} \log \mathscr{Y}}{\mathrm{d} \mathscr{X}} \frac{\mathrm{d} \mathscr{X}}{\mathrm{d} \log A_k} = -\frac{\mathrm{d} \log \Lambda_L}{\mathrm{d} \log A_k} = -(\theta_0 - 1) \left(\frac{\mu_k^{-1}}{\sum_j \lambda_j \mu_j^{-1}} - 1 \right) \lambda_k.$$

HA+IO concepts

Revenue-based and cost-based input-output matrix:

$$\Omega_{ij} = rac{
ho_{j} x_{ij}}{
ho_{i} y_{i}}, \quad \tilde{\Omega}_{ij} = rac{
ho_{j} x_{ij}}{\sum_{j'}
ho_{j'} x_{ij'}}.$$

Revenue-based and cost-based Leontief inverse matrix:

$$\Psi = (I - \Omega)^{-1} = I + \Omega + \Omega^2 + \dots, \quad \tilde{\Psi} = (I - \tilde{\Omega})^{-1} = I + \tilde{\Omega} + \tilde{\Omega}^2 + \dots$$

Revenue-based and cost-based Domar weights:

$$\lambda = b'\Psi, \quad \tilde{\lambda} = b'\tilde{\Psi}.$$

• Revenue-based and cost-based factor shares Λ and $\tilde{\Lambda}$.

Aggregation with Distortions

$$d\log Y = \underbrace{\frac{\partial \log \mathscr{Y}}{\partial \log A} d\log A}_{\text{pure technology}} + \underbrace{\frac{\partial \log \mathscr{Y}}{\partial \mathscr{X}} d\mathscr{X}}_{\text{reallocation}}$$

with

$$\frac{\partial \log \mathscr{Y}}{\partial \log A} d \log A = \tilde{\lambda}' d \log A \quad \text{and} \quad \frac{\partial \log \mathscr{Y}}{\partial \mathscr{X}} d \mathscr{X} = -\tilde{\lambda}' d \log \mu - \tilde{\Lambda}' d \log \Lambda.$$

- Pure technology: cost-based Domar weights sufficient stat.
- Reallocation: changes in factor shares sufficient stat.
- Disaggregated details and intial aggregation level matter.

Propagation Equations

Propagation equations:

$$\frac{d\log\lambda_i}{d\log A_k} = \sum_j \mu_j^{-1} \lambda_j (\theta_j - 1) \textit{Cov}_{\tilde{\Omega}^{(j)}} \left(\tilde{\Psi}_{(k)}, \frac{\Psi_{(j)}}{\lambda_i} \right).$$

- Can also derive equations for prices and quantities.
- IO network and elasticities sufficient stat.
- Can be extended and applied with endogenous wedges.

Growth Accounting

Change in aggregate TFP as new "distorted" Solow residual:

$$d \log TFP = d \log Y - \tilde{\Lambda}' d \log L.$$

Decomposition of changes in aggregate TFP:

$$d\log \mathit{TFP} = \underbrace{\tilde{\lambda}' d\log \mathit{A}}_{\text{pure technology}} \underbrace{-\tilde{\lambda}' d\log \mu - \tilde{\lambda}' d\log \Lambda}_{\text{allocative efficiency}}.$$

- Can perform decomposition without imposing any parametric assumptions on production functions.
- Generalizes Hall (88,90) for disaggregated economies.

Alternative Decompositions: Statistical

Popular decompositions: Baily et al. (92), Giriliches-Regev (95),
 Olley-Pakes (96), Foster et al. (01).

Decompositions of change in ad-hoc aggregate TFP index.

Not decompositions of change aggregate TFP.

Ex. Baily et al. (92):

$$d\log\left(\sum_{i}\lambda_{i}A_{i}\right) = \sum_{i}\lambda_{i}d\log A_{i} + \sum_{i}A_{i}d\log \lambda_{i},$$

Alternative Decompositions: Economic

 Popular decompositions: Jorgenson et al. (1987), Basu-Fernald (2002), and Petrin-Levinsohn (2012).

Ad-hoc decompositions of change in aggregate TFP.

"Grouping of terms", not GE couterfactuals.

• Ex. Jorgenson et al. (1987):

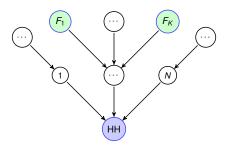
$$d\log TFP = \sum_{i} \lambda_{i} d\log A_{i} + \left(d\log TFP - \sum_{i} \lambda_{i} d\log A_{i}\right).$$

Alternative Decompositions: Misleading

- Detect reallocation effects when they unambigously shouldn't:
 - efficient economies;
 - · economies without reallocation.

See also Osotimehin (19).

Revealing Example of Acyclic Economies



- Unique feasible allocation, hence efficient.
- No reallocation effects, no changes in allocative efficiency.
- Alternative decompositions fail.

Application: Markups in US

Suppose markups are only distortions.

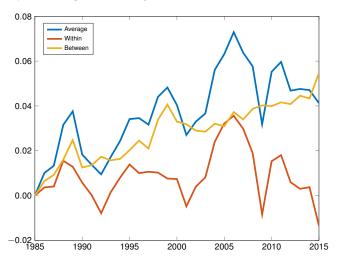
Use annual IO tables from BEA from 1997-2015.

Assign Compustat firms to industries.

 Use firm-level markups from three approaches: user cost, production function, and accounting profits.

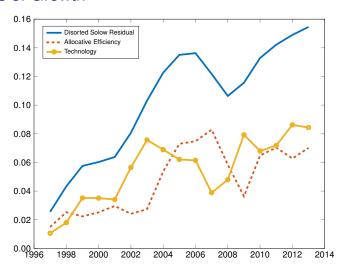
Aggregate-up from firm level.

(Harmonic) Average Markups: Between and Within



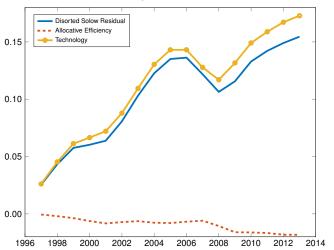
- With user-cost-approach markup data.
- Similar with other approaches for markups.

Sources of Growth



- With user-cost-approach markup data.
- Similar with other approaches for markups.

Sources of Growth: Industry Level Instead of Firm Level



- With user-cost-approach markup data.
- Similar with other approaches for markups.
- Illustrates importance of disaggregation.

Distance to the Frontier

- Different notion of change in allocative efficiency.
- Second-order approx. of distance to frontier for small wedges.
- Sum of Harberger triangles in GE:
 ~Harberger (64) but aggregate TFP (not welfare) without implausible transfers

$$\mathscr{L} \approx -\sum_{j} \frac{1}{2} \lambda_{j} \Delta \log \mu_{j} \Delta \log y_{j}.$$

Structural formula:

$$\mathscr{L} pprox \sum_{j} rac{1}{2} \lambda_{j} \theta_{j} \mathit{Var}_{\Omega^{(j)}} (\sum_{k} \Psi_{(k)} \Delta \log \mu_{k}).$$

Role of elasticities, IO network, distribution of wedges.

Application: Gains from Eliminating Markups in US

Calibrate parametric model.

Use IO table from BEA from 2015.

 Benchmark elasticities of substitution: across industries in consumption 0.9; between value-added and intermediates 0.5; across intermediates in production 0.01; between labor and capital 1; within industries 8.

Gains from Eliminating Markups in US

	User Cost (UC)	Accounting (AP)	Production Function (PF)
2015	20%	17%	24%
1997	3%	5%	17%

- Measures show big increase between 1997 and 2014.
- Contrast with 0.1% estimate of Harberger (1954) triangles.

"It takes a heap of Harberger triangles to fill an Okun gap."

— Tobin

Gains from Eliminating Markups: Robustness

	Benchmark	CD + CES	<i>CES</i> = 4	No IO	Sectoral
UC	20%	21%	10 %	7 %	0.7%
AP	17%	18%	9 %	7 %	1%
PF	24 %	27 %	13%	13%	3%

Elasticities matter.

Input-output structure matters.

• Illustrates importance of disaggregation.

Nonlinearities

$$d^2 \log Y = d \log A' \frac{\partial^2 \log \mathscr{Y}}{\partial \log A^2} d \log A + d \log A' \frac{\partial^2 \log \mathscr{Y}}{\partial \log A d \mathscr{X}} d \mathscr{X},$$

 $= d\lambda' d \log A$ with $d\lambda$ from propagation equations.

• Second-order approx. (with $\Delta\lambda$ from propagation equations):

$$\Delta \log Y \approx \lambda' \Delta \log A + \frac{1}{2} \Delta \lambda' \Delta \log A.$$

- Changes in sales shares ex-post sufficient stat.
- IO network and elasticities ex-ante sufficient stat.
- Disaggregated details and initial aggregation level matter.

Back to Horizontal Economy

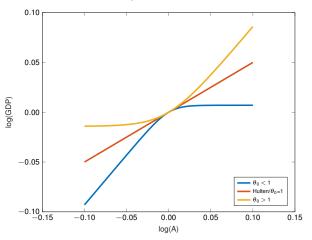
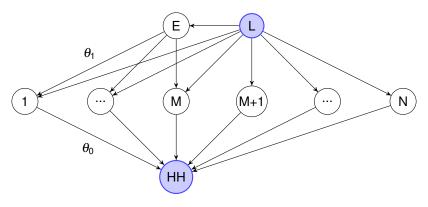


Figure: Aggregate output as a function of shocks to one of the producers.

- Cobb-Douglas knife-edge case with no nonlinearities.
- Implications for firm- vs. sector-level shocks.

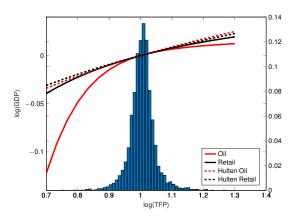
"Universal" Input Example

One factor, full reallocation, two elasticities $\theta_1 \ll \theta_0$.



$$\frac{\mathrm{d}^2 \log C}{\mathrm{d} \log A_E^2} = \frac{d\lambda_E}{d \log A_E} = (\theta_0 - 1)\lambda_E \left(\frac{N}{M} - 1\right)\lambda_E + (\theta_1 - 1)\lambda_E \left(1 - \frac{N}{M}\lambda_E\right).$$

Oil v. Retail



- Simulated model, no markups, sectoral-level shocks.
- Intuition: low micro-elasticity of substitution, universal input.
- Large asymmetric effects of oil shocks (Hamilton, 2003).

Reduced-form Impact of Oil Shocks

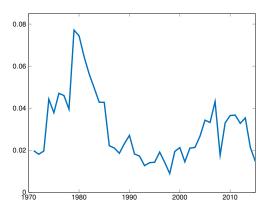


Figure: Global expenditures on crude oil as a fraction of world GDP.

- First-order effect: $1.8\% \times -13\% \approx -0.2\%$.
- Second-order effect: $\frac{1}{2}(1.8\% + 7.6\%) \times -13\% \approx -0.6\%$.

Baumol's Cost Disease and US TFP Growth

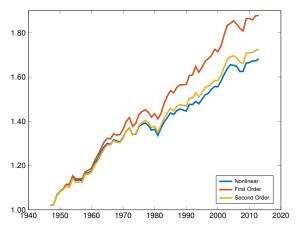


Figure: Cumulative change in *TFP*: nonlinear (actual), first-order approximation, and second-order approximation.

Baumol's cost disease reduced aggregate TFP growth by 20 pp.

Application: Gains from Trade in Trade Models

(σ,ζ,θ)	No IO (1,1,1)	(1,1,1)	(1,0.5,0.6)	(0.9, 0.5, 0.2)
FRA	9.8%	18.5%	24.7%	30.2%
JPN	2.4%	5.2%	5.5%	5.7%
MEX	11.5%	16.2%	21.3%	44.5%
USA	4.5%	9.1%	10.3%	13.0%

- Accounting for IO network and cross-industry elasticities drastically magnifies gains from trade.
- Shortcuts with no IO fine qualitatively but not quantitatively.
- Illustrates importance of disaggregation.

Conclusion

- Macro as explicitly aggregated micro increasingly possible.
- More and better disaggregated data.
- New theories of propagation and aggregation with HA+IO.
- Explosion of work, much more needed (theory, data, empirics).