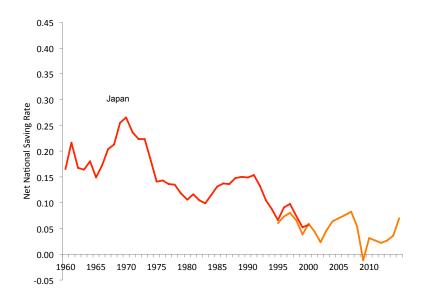
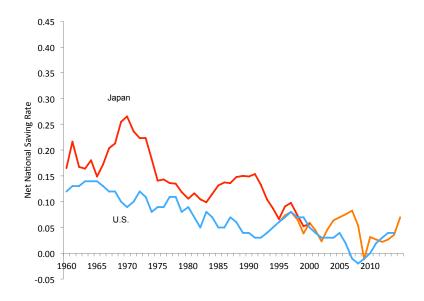
Understanding National Savings

Ayşe İmrohoroğlu USC Marshall

SED 2017

There are large differences in national saving rates


across countries


and

across time

National Saving Rate = Household + Corporate + Government

Net National Saving Rate: $\frac{Y_t - C_t - G_t - \delta_t K_t}{Y_t - \delta_t K_t}$

Such differences have often been puzzling

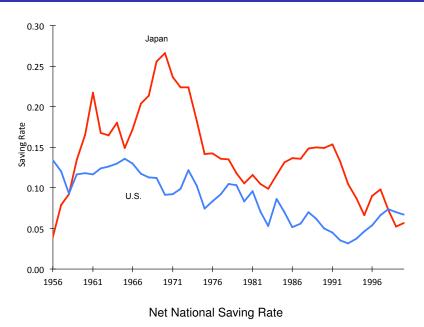
This talk:

What do we know (what have I learned) about these differences in saving rates.

Sneak Preview

Behavior of the national saving rates not too puzzling!

Outline


- Examine National Saving Rates in
 - Japan
 - Mexico
 - Chile
 - Colombia
 - China
 - U.S.

Outline

- Standard Growth Model
- Overlapping Generations Model
- Dynastic Model
- Closed economy and perfect foresight

JAPAN

Japan versus the U.S

Japan versus the U.S.

- Why did the Japanese save so much?
- · Many mentioned:
 - differences in preferences,
 - the bonus system,
 - · high housing prices,
 - high educational costs,
 - high marriage costs.

- Hayashi (1986): Reconstruction Hypothesis
 - High savings due to the destruction of the capital stock after WW II
- Christiano (1989): "The standard model fails"

Standard Model

- Let's use a standard model
- See where it fails
- Where it succeeds

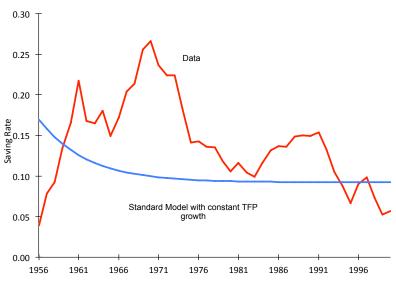
Standard Model

Households with N_t members maximize

$$\max \left\{ \sum_{t=0}^{\infty} \beta^t N_t \left[\log c_t + \alpha \log \left(T - h_t \right) \right] \right\}$$

subject to

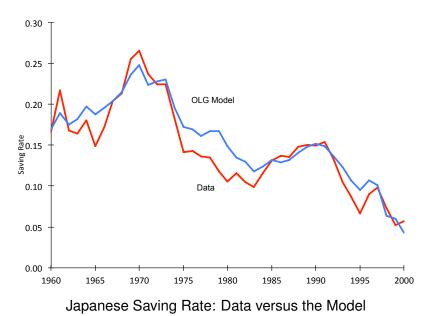
$$C_t + X_t \leq w_t H_t + [r_t - \tau_t (r_t - \delta_t)] K_t + \pi_t$$


Standard Model

• Firms maximize profits

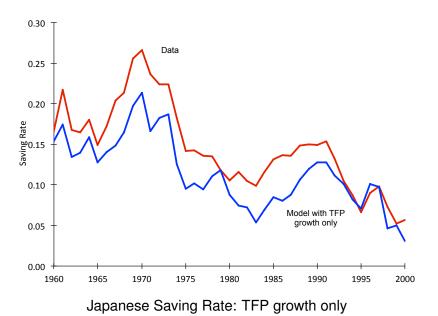
$$Y_t = A_t K_t^{\alpha} H_t^{1-\alpha}$$

- Government
 - Taxes capital income to pay for G_t.
 - Uses π_t to balance its budget.


- Calibrate to Japan
- Set the initial K/Y ratio to its counterpart in the data
- Set the TFP growth rate to the period average

Japanese Saving Rate: Standard Model

- Perhaps we need demographics, aging, social security.......
 - Overlapping generations model
 - Changing longevity
 - Retirement
 - Borrowing constraints
 - Increased social security benefits
- Feed in exogenous changes in TFP year by year
- Perfect foresight


Chen, İmrohoroğlu, İmrohoroğlu, ET (2007)

Decompose the Components

- What made it work?
- Solve the model with one component at a time
 - TFP only
 - Population Growth Rate only
 - · Increased longevity only
 - Taxes only

Decompose the Components

Lucas says

- Why do you need all the bells and whistles then?
- Infinite horizon with TFP should do it!
- Re-try the standard model but use annual growth rates of TFP!

Back to the Standard Model

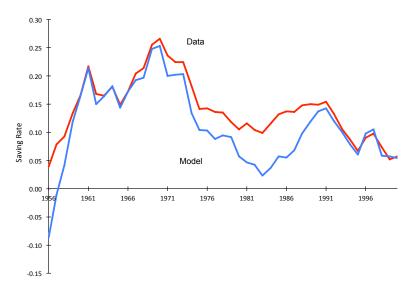
Households maximize

$$\max \left\{ \sum_{t=0}^{\infty} \beta^t N_t \left[\log c_t + \alpha \log \left(T - h_t \right) \right] \right\}$$

subject to

$$C_t + X_t \leq w_t H_t + [r_t - \tau_t (r_t - \delta_t)] K_t + \pi_t$$

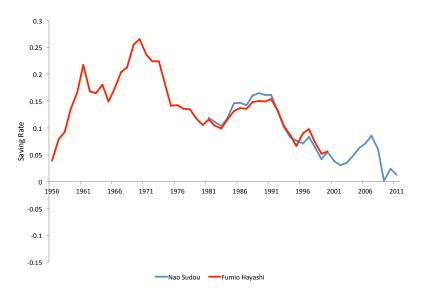
Firms maximize profits


$$Y_t = A_t K_t^{\alpha} H_t^{1-\alpha}$$

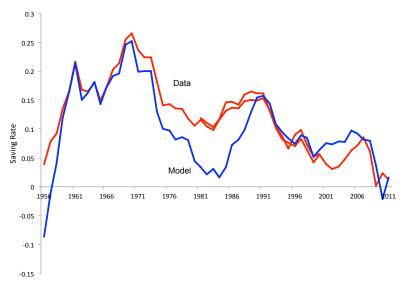
- Government
 - Taxes capital income to pay for a fixed stream of government purchases G_t.
 - Uses π_t to balance its budget.

Calibration

- Need
 - Tax rate
 - Population growth rate
 - Depreciation rate
 - Initial capital stock
 - TFP growth rate


Of Course

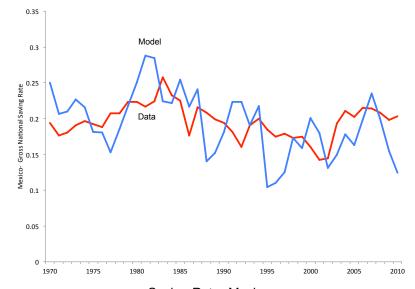
Japanese Saving Rate: Data versus the Model Chen, İmrohoroğlu, İmrohoroğlu, AER (2006)


What happened since 2000?

What happened since 2000?

Japanese Saving Rate: Extended Data

Model?

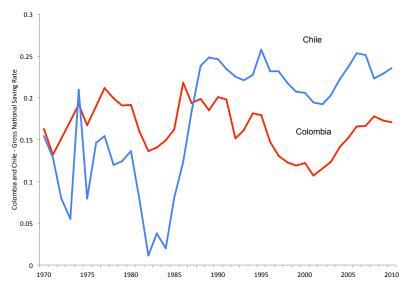


Japanese Saving Rate: Data versus the Model

Mexico

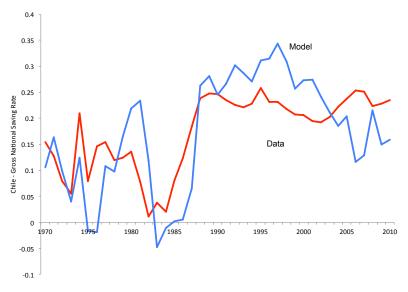
Mexico

Mexico

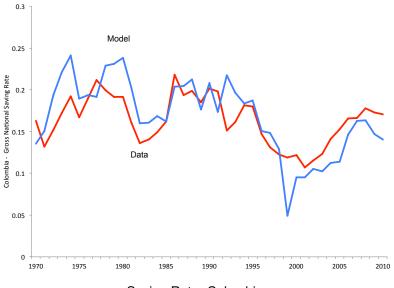


Saving Rate: Mexico Fernández, İmrohoroğlu, Tamayo (2017)

Chile and Colombia


Chile and Colombia

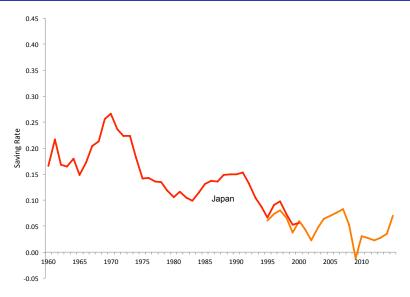
Chile and Colombia


Gross National Saving Rate: Chile and Colombia Fernández, İmrohoroğlu, Tamayo (2017)

Chile

Saving Rate: Chile

Colombia


Saving Rate: Colombia

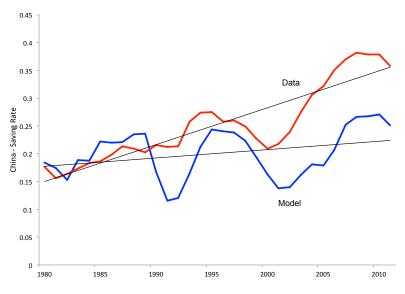
Chile and Colombia

- Why the big increase in the saving rate in Chile?
- Two things happen in the mid-1980s
 - TFP Growth rate in Chile increases compared to the past and compared to Colombia

TFP Growth Rate		
	Chile	Colombia
1970 -1985	1.008	1.012
1986 -1995	1.039	1.002

Capital income tax rate in Chile: decline from about 50% to 10%.
Bergoeing, Kehoe, Kehoe, and Soto (2002)

Saving Rate: Japan and China



Saving Rate: Japan and China

Chinese Saving and Investment Rate

Standard Model

Chinese Saving Rate: Data versus the Model

What might be going on in China?

- Choukhmane, Coeurdacier, and Jin (2013): The impact of the one-child policy
- Curtis, Lagauer and Mark (2014): Demographics
- Wei and Zhang (2011): The rising sex ratio imbalance
- Wang and Wen (2011): High housing prices
- Song, Storesletten and Zilibotti (2011): Financial frictions, reallocation of resources across heterogenous firms

Extend the Model: Imrohoroğlu and Zhao (2017)

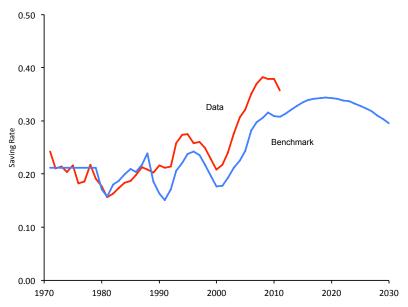
- We will incorporate some of these components
- In particular
 - Significant amount of family insurance in China
 - Especially Long-Term Care (LTC) mostly provided by families
 - LTC: Disabled in activities of daily living (eating, dressing, bathing, getting in and out of the bed, inside transferring...)
 - One child policy eroding family insurance
 - Government provided social insurance increasing but weak

İmrohoroğlu and Zhao (2017)

- A general equilibrium model with two-sided altruism
 - Laitner (1992), Fuster, İmrohoroğlu, and İmrohoroğlu (2003 and 2007)
- Decision-making unit is the household consisting of a parent and n children who pool resources together
- Life cycle of an individual:
 - born at age 20,
 - become parents (of 20 year old kids) at real-age 55,
 - retire at age 60, and
 - live up to age 90.
- An individual's life overlaps with his parent's in the first 35 periods and with the life of his children in the last 35 periods

Households

- Individuals face labor income risks
- Parents face health related risks that necessitate long-term care
 - If LTC needed there is a time (of the children) and money cost
 - Use micro data to calibrate expenditures and time spent on informal care for individuals in LTC
- Social security not great:
 - In 2002 and 2005, 40-50% of the elderly in cities and more than 90% of the elderly in rural areas did not have a pension
- · Help for the most destitute not great

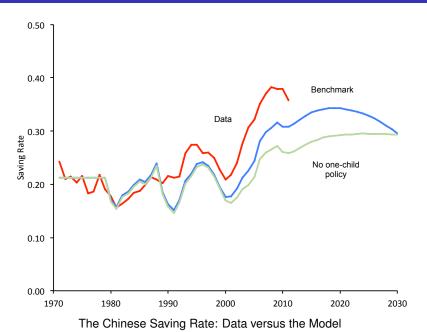

Firms and Government

A representative firm produces a single good using

$$Y_t = A_t K_t^{\alpha} N_t^{1-\alpha}$$

- The government taxes both capital, and labor income.
- Uses the revenues to finance an exogenously given stream of government expenditures G_t.
- · Also taxes to pay for social security

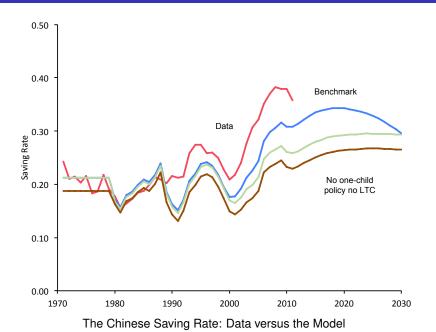
Data versus the Model



The Chinese Saving Rate: Data versus the Model

Role of the one-child policy

- What if they did not have the one-child policy?
- There would be more family insurance
- Let the fertility rate decline gradually along the transition path
- Fertility rate reaches the replacement rate of one child per parent in 2050


Role of the one-child policy

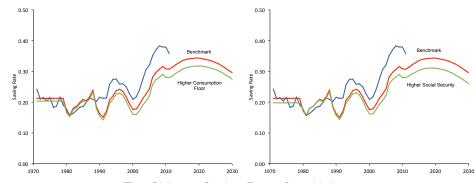
Role of the LTC risk

• What if there were no long-term care needs. All healthy families.

Role of the LTC risk

Data versus the Model

- Results are sensitive to:
 - What happens to the most destitute
 - Generosity of social security
 - The severity of the risk


Data versus the Model

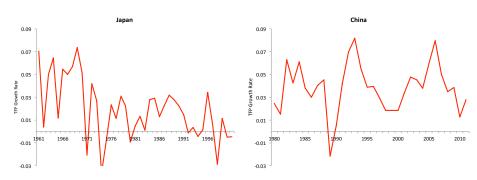
- What happens to the most destitute?
 - De Nardi, French and Jones (JPE 2010): "Properly accounting for old age expenditure on medical care and for social insurance programs providing a consumption floor are very important to explain the elderly's savings"
 - In the U.S. Medicaid for the most destitute
 - In China
 - No Medicaid
 - High poverty rate among the elderly

Sensitivity

- Lower /Higher saving rates
 - Higher/lower social security replacement rate;
 - Higher/lower consumption floor

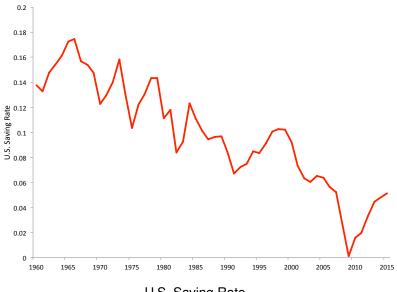
Sensitivity

The Chinese Saving Rate: Sensitivity

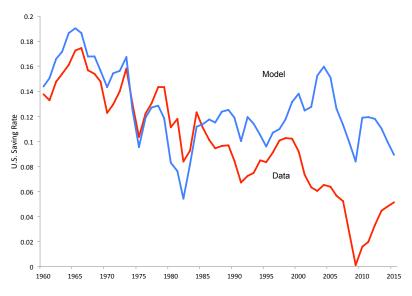

The Case of China

- High saving rates in China
 - · Risks faced in old age
 - Decline in family insurance
 - Government provided insurance for old-age risks not so good "yet"

The Case of China


• Why was TFP important in Japan but not in China?

TFP



TFP Growth Rates

United States

U.S. Saving Rate

U.S. Saving Rate: Data versus the Model

- This is a symptom of other failures
- Standard theory does well until the late 1980s
- But later misses
 - savings
 - · and the hours boom

- Not so easy to change this
- McGrattan and Prescott (AEJ Macroeconomics, 2010): Intangible Capital
- Hansen and Ohanian (Handbook of Macroeconomics, forthcoming): Home Production
- Mendoza, Quadrini, and Rios-Rull (JPE, 2009): Financial Integration, Global Savings

- Differences in National Saving Rates
 - TFP (especially for the high-frequency fluctuations)
 - Taxes
 - Demographic changes
 - Family Insurance
 - Social Insurance
 - Social Security; Medicaid

- Differences in National Saving Rates
 - Not too puzzling
 - Some mysteries remain

- Looking behind the aggregate savings
- Differences across corporate, household, and government savings
- Differences in saving rates across households
- Differences in returns across households

Thank you!